Monday 29 March 2010

Waves in the Earth Part 1- the slinky simulation

The latest ELI+ activity is 'Waves in the Earth 1 - the slinky simulation' The slinky spring is a well known aid in teaching the physics of wave motion but in this Earthlearningidea, it is applied to the transmission of earthquake waves through the Earth. Longitudinal (P) and transverse (S) waves can be demonstrated very easily with the spring. As always, with Earthlearningideas, the science behind the activity is explained clearly and concisely in the 'Back-up'.
Please visit our website for other innovative Earth-related teaching ideas.

Monday 22 March 2010

Carbon goes round and round and round

Can your pupils place these pictures in the carbon cycle? Can they explain what is happening? If not, try this Earthlearningidea - 'Carbon goes round and round and round; make your own carbon cycle'? The carbon cycle is happening everywhere all the time. Carbon is 'fixed' by certain processes and 'released' by others.
This is one of many activities to be found on our website.

Monday 15 March 2010

New ELI+ - Magnetic Earth

Try out latest Earthlearningidea with your pupils - 'Magnetic Earth - modelling the magnetic field of the Earth' At the end of the activity pupils should be able to:-
- locate the North and South poles of a hidden bar magnet;
- identify which pole is North and which is South;
- plot the three dimensional field of the magnet;
- relate the model to the bipolar magnetic field of the Earth;
- describe how, when rocks retain the direction of the magnetic field at the time they formed, this information can be used to work out the latitude of the region at that time.
This is one of many Earth-related activities you can find on our website.

Saturday 6 March 2010

Extension ideas for 'Clay balls and the structure of the Earth'

Have you tried our latest activity 'From clay balls to the structure of the Earth'? We have now published Extension details (19MB) about this Earthlearningidea. Class discussion is likely to conclude that, firstly, the main evidence for the structure of the Earth, including the depths of the boundaries and the state and composition of the materials involved, comes from seismic waves. Secondly, extra evidence comes from the Earth's magnetic field, its mass (and density) and its rotational inertia.
Do try this activity with your students and send us their findings.
Visit our website for lots of Earth-related activities.

Monday 1 March 2010

How can physics be used to probe the Earth's structure?

The latest ELI+ activity is 'From clay balls to the structure of the Earth; a discussion of how physics can be used to probe Earth's structure.'
This activity consolidates understanding of many physical processes and characteristics including, density, inertia, magnetism, electromagnetism, sound (ultrasound and seismic) and radiation (X-rays and ionising) The best evidence we have for the core‘s position and character is seismic waves, but density-measurements, inertia and magnetism each contribute useful information.
We should be pleased to publish any extension ideas you have for this activity.
Scroll through the Keyword Index of Earthlearningideas to find an activity for your pupils.